Android设计模式源码解析之单例模式

1. 模式介绍

模式的定义

确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。

模式的使用场景

确保某个类有且只有一个对象的场景,例如创建一个对象需要消耗的资源过多,如要访问 IO 和数据库等资源。

2. UML类图

url

角色介绍

  • Client : 高层客户端。
  • Singleton : 单例类。

3. 模式的简单实现

简单实现的介绍

单例模式是设计模式中最简单的,只有一个单例类,没有其他的层次结构与抽象。该模式需要确保该类只能生成一个对象,通常是该类需要消耗太多的资源或者没有没有多个实例的理由。例如一个公司只有一个CEO、一台电脑通常只有一个显示器等。下面我们以公司里的CEO为例来简单演示一下,一个公司可以有几个VP,无数个员工,但是CEO只有一个,请看下面示例。

实现源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
package com.dp.example.singleton;
/**
* 人的基类
* @author mrsimple
*
*/

public abstract class Person {
public abstract void talk() ;
}

// 普通员工
public class Staff extends Person {

@Override
public void talk() {

}

}

// 副总裁
public class VP extends Person {

@Override
public void talk() {

}
}

// CEO, 单例模式
public class CEO extends Person {

private static final CEO mCeo = new CEO();

private CEO() {
}

public static CEO getCeo() {
return mCeo;
}

@Override
public void talk() {
System.out.println("CEO发表讲话");
}

}

// 公司类
import java.util.ArrayList;
import java.util.List;

public class Company {
private List<Person> allPersons = new ArrayList<Person>();

public void addStaff(Person per) {
allPersons.add(per);
}

public void showAllStaffs() {
for (Person per : allPersons) {
System.out.println("Obj : " + per.toString());
}
}
}

// test
public class Test {
public static void main(String[] args) {
Company cp = new Company() ;
Person ceo1 = CEO.getCeo() ;
Person ceo2 = CEO.getCeo() ;
cp.addStaff(ceo1);
cp.addStaff(ceo2);

Person vp1 = new VP() ;
Person vp2 = new VP() ;

Person staff1 = new Staff() ;
Person staff2 = new Staff() ;
Person staff3 = new Staff() ;

cp.addStaff(vp1);
cp.addStaff(vp2);
cp.addStaff(staff1);
cp.addStaff(staff2);
cp.addStaff(staff3);

cp.showAllStaffs();
}
}

输出结果如下 :
result

可以看到, CEO两次输出的CEO对象的文字描述都是一样的,而VP、Staff类的对象都是不同的。即CEO是唯一实例,而其他类型都是不同的实例。这个实现的核心在于将CEO类的构造方法私有化,使得外部程序不能通过构造函数来构造CEO对象,而CEO类通过一个静态方法返回一个唯一的对象。

单例模式的其他实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
package com.dp.example.singleton;

public class Singleton {
private static Singleton mInstance = null;

private Singleton() {

}

public void doSomething() {
System.out.println("do sth.");
}

/**
* 方式二、double-check, 避免并发时创建了多个实例, 该方式不能完全避免并发带来的破坏.
*
* @return
*/

public static Singleton getInstance() {
if (mInstance == null) {
synchronized (Singleton.class) {
if (mInstance == null) {
mInstance = new Singleton();
}
}
}
return mInstance;
}

/**
* 方式三 : 在第一次加载SingletonHolder时初始化一次mOnlyInstance对象, 保证唯一性, 也延迟了单例的实例化,
* 如果该单例比较耗资源可以使用这种模式.
*
* @return
*/

public static Singleton getInstanceFromHolder() {
return SingletonHolder.mOnlyInstance;
}

/**
* 静态内部类
*
* @author mrsimple
*
*/

private static class SingletonHolder {
private static final Singleton mOnlyInstance = new Singleton();
}

/**
* 方式四 : 枚举单例, 线程安全
* @author mrsimple
*
*/

enum SingletonEnum {
INSTANCE;
public void doSomething() {
System.out.println("do sth.");
}
}

/**
* 方式五 : 注册到容器, 根据key获取对象.一般都会有多种相同属性类型的对象会注册到一个map中
* instance容器
*/

private static Map<string singleton=""> objMap = new HashMap<string singleton="">();
/**
* 注册对象到map中
* @param key
* @param instance
*/

public static void registerService(String key, Singleton instance) {
if (!objMap.containsKey(key) ) {
objMap.put(key, instance) ;
}
}

/**
* 根据key获取对象
* @param key
* @return
*/

public static Singleton getService(String key) {
return objMap.get(key) ;
}

}

不管以哪种形式实现单例模式,它们的核心原理都是将构造函数私有化,并且通过静态方法获取一个唯一的实例,在这个获取的过程中你必须保证线程安全、反序列化导致重新生成实例对象等问题,该模式简单,但使用率较高。

Android源码中的模式实现

在Android系统中,我们经常会通过Context获取系统级别的服务,比如WindowsManagerService, ActivityManagerService等,更常用的是一个叫LayoutInflater的类。这些服务会在合适的时候以单例的形式注册在系统中,在我们需要的时候就通过Context的getSystemService(String name)获取。我们以LayoutInflater为例来说明, 平时我们使用LayoutInflater较为常见的地方是在ListView的getView方法中。

1
2
3
4
5
6
7
8
9
10
11
12
13
@Override
public View getView(int position, View convertView, ViewGroup parent)
View itemView = null;

if (convertView == null) {
itemView = LayoutInflater.from(mContext).inflate(mLayoutId, null);
// 其他代码
} else {
itemView = convertView;
}
// 获取Holder
// 初始化每项的数据
return itemView;
}

通常我们使用LayoutInflater.from(Context)来获取LayoutInflater服务, 下面我们看看LayoutInflater.from(Context)的实现。

1
2
3
4
5
6
7
8
9
10
11
/**
* Obtains the LayoutInflater from the given context.
*/

public static LayoutInflater from(Context context) {
LayoutInflater LayoutInflater =
(LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
if (LayoutInflater == null) {
throw new AssertionError("LayoutInflater not found.");
}
return LayoutInflater;
}

可以看到from(Context)函数内部调用的是Context类的getSystemService(String key)方法,我们跟踪到Context类看到, 该类是抽象类。

1
2
3
public abstract class Context {
// 省略
}

使用的getView中使用的Context对象的具体实现类是什么呢 ?其实在Application,Activity, Service,中都会存在一个Context对象,即Context的总个数为Activity个数 + Service个数 + 1。而ListView通常都是显示在Activity中,那么我们就以Activity中的Context来分析。

我们知道,一个Activity的入口是ActivityThread的main函数。在该main函数中创建一个新的ActivityThread对象,并且启动消息循环(UI线程),创建新的Activity、新的Context对象,然后将该Context对象传递给Activity。下面我们看看ActivityThread源码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    public static void main(String[] args) {
SamplingProfilerIntegration.start();

// CloseGuard defaults to true and can be quite spammy. We
// disable it here, but selectively enable it later (via
// StrictMode) on debug builds, but using DropBox, not logs.
CloseGuard.setEnabled(false);

Environment.initForCurrentUser();

// Set the reporter for event logging in libcore
EventLogger.setReporter(new EventLoggingReporter());
Process.setArgV0("<pre-initialized>");
// 主线程消息循环
Looper.prepareMainLooper();
// 创建ActivityThread对象
ActivityThread thread = new ActivityThread();
thread.attach(false);

if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}

AsyncTask.init();

if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}

Looper.loop();

throw new RuntimeException("Main thread loop unexpectedly exited");
}

private void attach(boolean system) {
sThreadLocal.set(this);
mSystemThread = system;
if (!system) {
ViewRootImpl.addFirstDrawHandler(new Runnable() {
public void run() {
ensureJitEnabled();
}
});
android.ddm.DdmHandleAppName.setAppName("<pre-initialized>",
UserHandle.myUserId());
RuntimeInit.setApplicationObject(mAppThread.asBinder());
IActivityManager mgr = ActivityManagerNative.getDefault();
try {
mgr.attachApplication(mAppThread);
} catch (RemoteException ex) {
// Ignore
}
} else {
// 省略
}
}

在main方法中,我们创建一个ActivityThread对象后,调用了其attach函数,并且参数为false. 在attach函数中, 参数为false的情况下, 会通过Binder机制与ActivityManagerService通信,并且最终调用handleLaunchActivity函数 ( 具体分析请参考老罗的博客 : Activity的启动流程),我们看看该函数的实现 。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

private void handleLaunchActivity(ActivityClientRecord r, Intent customIntent) {
// 代码省略
Activity a = performLaunchActivity(r, customIntent);
// 代码省略
}

private Activity performLaunchActivity(ActivityClientRecord r, Intent customIntent) {
// System.out.println("##### [" + System.currentTimeMillis() + "] ActivityThread.performLaunchActivity(" + r + ")");
// 代码省略
Activity activity = null;
try {
java.lang.ClassLoader cl = r.packageInfo.getClassLoader();
activity = mInstrumentation.newActivity( // 1 : 创建Activity
cl, component.getClassName(), r.intent);
// 代码省略
} catch (Exception e) {
// 省略
}

try {
Application app = r.packageInfo.makeApplication(false, mInstrumentation);

if (activity != null) {
Context appContext = createBaseContextForActivity(r, activity); // 2 : 获取Context对象
CharSequence title = r.activityInfo.loadLabel(appContext.getPackageManager());
Configuration config = new Configuration(mCompatConfiguration);
// 3: 将appContext等对象attach到activity中
activity.attach(appContext, this, getInstrumentation(), r.token,
r.ident, app, r.intent, r.activityInfo, title, r.parent,
r.embeddedID, r.lastNonConfigurationInstances, config);

// 代码省略
// 4 : 调用Activity的onCreate方法
mInstrumentation.callActivityOnCreate(activity, r.state);
// 代码省略
} catch (SuperNotCalledException e) {
throw e;
} catch (Exception e) {
// 代码省略
}

return activity;
}


private Context createBaseContextForActivity(ActivityClientRecord r,
final Activity activity)
{

// 5 : 创建Context对象, 可以看到实现类是ContextImpl
ContextImpl appContext = new ContextImpl(); appContext.init(r.packageInfo, r.token, this);
appContext.setOuterContext(activity);

// 代码省略
return baseContext;
}

通过上面1~5的代码分析可以知道, Context的实现类为ComtextImpl类。我们继续跟踪到ContextImpl类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class ContextImpl extends Context {

// 代码省略
/**
* Override this class when the system service constructor needs a
* ContextImpl. Else, use StaticServiceFetcher below.
*/

static class ServiceFetcher {
int mContextCacheIndex = -1;

/**
* Main entrypoint; only override if you don't need caching.
*/

public Object getService(ContextImpl ctx) {
ArrayList<Object> cache = ctx.mServiceCache;
Object service;
synchronized (cache) {
if (cache.size() == 0) {
for (int i = 0; i < sNextPerContextServiceCacheIndex; i++) {
cache.add(null);
}
} else {
service = cache.get(mContextCacheIndex);
if (service != null) {
return service;
}
}
service = createService(ctx);
cache.set(mContextCacheIndex, service);
return service;
}
}

/**
* Override this to create a new per-Context instance of the
* service. getService() will handle locking and caching.
*/

public Object createService(ContextImpl ctx) {
throw new RuntimeException("Not implemented");
}
}

// 1 : service容器
private static final HashMap<String, ServiceFetcher> SYSTEM_SERVICE_MAP =
new HashMap<String, ServiceFetcher>();

private static int sNextPerContextServiceCacheIndex = 0;
// 2: 注册服务器
private static void registerService(String serviceName, ServiceFetcher fetcher) {
if (!(fetcher instanceof StaticServiceFetcher)) {
fetcher.mContextCacheIndex = sNextPerContextServiceCacheIndex++;
}
SYSTEM_SERVICE_MAP.put(serviceName, fetcher);
}


// 3: 静态语句块, 第一次加载该类时执行 ( 只执行一次, 保证实例的唯一性. )
static {
// 代码省略
// 注册Activity Servicer
registerService(ACTIVITY_SERVICE, new ServiceFetcher() {
public Object createService(ContextImpl ctx) {
return new ActivityManager(ctx.getOuterContext(), ctx.mMainThread.getHandler());
}});

// 注册LayoutInflater service
registerService(LAYOUT_INFLATER_SERVICE, new ServiceFetcher() {
public Object createService(ContextImpl ctx) {
return PolicyManager.makeNewLayoutInflater(ctx.getOuterContext());
}});
// 代码省略
}

// 4: 根据key获取对应的服务,
@Override
public Object getSystemService(String name) {
// 根据name来获取服务
ServiceFetcher fetcher = SYSTEM_SERVICE_MAP.get(name);
return fetcher == null ? null : fetcher.getService(this);
}

// 代码省略
}

从ContextImpl类的部分代码中可以看到,在虚拟机第一次加载该类时会注册各种服务,其中就包含了LayoutInflater Service, 将这些服务以键值对的形式存储在一个HashMap中,用户使用时只需要根据key来获取到对应的服务,从而达到单例的效果。这种模式就是上文中提到的“单例模式的实现方式5”。系统核心服务以单例形式存在,减少了资源消耗。

4. 杂谈

优点与缺点

优点

  • 由于单例模式在内存中只有一个实例,减少了内存开支,特别是一个对象需要频繁地创建、销毁时,而且创建或销毁时性能又无法优化,单例模式的优势就非常明显。
  • 由于单例模式只生成一个实例,所以减少了系统的性能开销,当一个对象的产生需要比较多的资源时,如读取配置、产生其他依赖对象时,则可以通过在应用启动时直接产生一个单例对象,然后用永久驻留内存的方式来解决;
  • 单例模式可以避免对资源的多重占用,例如一个写文件动作,由于只有一个实例存在内存中,避免对同一个资源文件的同时写操作。
  • 单例模式可以在系统设置全局的访问点,优化和共享资源访问,例如可以设计一个单例类,负责所有数据表的映射处理。

缺点

  • 单例模式一般没有接口,扩展很困难,若要扩展,除了修改代码基本上没有第二种途径可以实现。

本文为 Android 设计模式源码解析 中 单例模式 分析
Android系统版本: 2.3
分析者:Mr.Simple,分析状态:完成,校对者:Mr.Simple,校对状态:完成